STIRA
0.1
|
class for 2D point cloud analysis Uses OpenCV's functionalities More...
#include <ClusteringLearning.h>
Public Member Functions | |
ClusteringLearning (std::vector< Point< double > > inputPoints) | |
constructor More... | |
PcaResult | ComputePCA () |
PCA analysis of this 2D point cloud (uses OpenCV) Ref: http://docs.opencv.org/3.1.0/d1/dee/tutorial_introduction_to_pca.html. More... | |
std::vector< pointCluster > | ComputeKMeans (std::vector< Point< double > > clusterCenters) |
K-Means clustering of this 2D point cloud Ref: https://en.wikipedia.org/wiki/K-means_clustering. More... | |
class for 2D point cloud analysis Uses OpenCV's functionalities
stira::common::ClusteringLearning::ClusteringLearning | ( | std::vector< Point< double > > | inputPoints | ) |
constructor
inputPoints | cloud of input points to be analysed |
std::vector< pointCluster > stira::common::ClusteringLearning::ComputeKMeans | ( | std::vector< Point< double > > | clusterCenters | ) |
K-Means clustering of this 2D point cloud Ref: https://en.wikipedia.org/wiki/K-means_clustering.
clusterCenters | vector of initial cluster centroids |
References stira::common::pointCluster::center, and stira::common::pointCluster::members.
PcaResult stira::common::ClusteringLearning::ComputePCA | ( | ) |
PCA analysis of this 2D point cloud (uses OpenCV) Ref: http://docs.opencv.org/3.1.0/d1/dee/tutorial_introduction_to_pca.html.
References stira::common::PcaResult::center, stira::common::PcaResult::eigenValue, stira::common::PcaResult::vector, stira::common::Point< T >::x, and stira::common::Point< T >::y.